Life	Life SciencesMATHEMATIQUES2nd session 2001					
Questions		ANSWERS	Mark			
Ι	1	The normals to (P) and (Q) are $\overrightarrow{N_{P}}(1; -3; -2)$ $\overrightarrow{N_{Q}}(3; -1; -2)$ $\overrightarrow{N_{P}}$ and $\overrightarrow{N_{Q}}$ not collinear because $\frac{1}{3} \neq \frac{-3}{-1}$. (P) and (Q) are intersecting along the straight line (D) of equation : Let $x = m \begin{cases} 3y+2z=m+6\\ -y-2z=-3m-2 \end{cases}$ the solution $\begin{cases} y=-m+2\\ z=2m \end{cases}$ (D) : $x = m y = -m+2 z = 2m$.	1			
	2	$(P) \cap (Q) = (D), \text{ A intersection between } (D) \text{ and } (R) \text{ then A is common to the three planes } (P), (Q) \text{ and } (R).$ $m - m + 2 - 2m + 2 = 0 \text{ then } m = 2 \text{ and } A(2; 0; 4).$				
	3	I midpoint of [OA] then I (1;0;2) A symmetric of O with respect to (S), (S) passes through I and admits as normal \overrightarrow{OA} (2;0;4) M (x;y;z) point of (S) then \overrightarrow{OA} . \overrightarrow{IM} = 0 (S): 2(x-1) + 0(y-0) + 4(z-2) = 0 (S): x + 2z - 5 = 0 d(A,S) = $\frac{ 2+8-5 }{\sqrt{1+4}} = \frac{5}{\sqrt{5}} = \sqrt{5}$ unit of length.	1			
	1	$z' = \frac{z}{ z ^2} \text{ for } z = 2 z = 2 z' = \frac{2}{4} = \frac{1}{2} ;$ for $z = \sqrt{2} e^{i\frac{\pi}{4}} z = \left \sqrt{2} e^{i\frac{\pi}{4}}\right z = \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 1 + i$ $z' = \frac{1+i}{2} = \frac{1}{2} + \frac{i}{2} ;$ for $z = \sqrt{2} e^{-i\frac{\pi}{4}}$ same calculation $z' = \frac{1}{2} - \frac{i}{2} .$	3⁄4			
П	2	$ z^2 = z.\overline{z}$ therefore $z' = \frac{z}{z\overline{z}} = \frac{1}{\overline{z}}$.	1/2			
	3	$(\overrightarrow{OM}, \overrightarrow{OM'}) = \arg(z') - \arg(z) = \arg(\frac{1}{\overline{z}}) - \arg(z) = 0 \mod 2\pi$ The three points O, M and M' are collinear.	3⁄4			
	4	$z' = \frac{1}{\overline{z}}$; $\overline{z'} = \frac{1}{z}$; $\overline{z'-1} = \overline{z'} - 1 = \frac{1}{z} - 1 = \frac{1-z}{z}$	1			
	5	$z' = \frac{1}{\overline{z}}$ then $ z' = \left \frac{1}{\overline{z}}\right = \frac{1}{ z }$ because $(\overline{z} = z)$.	1/2			

				2							
	6-a	M describes the circle (C) with center E and radius 1									
	$\begin{vmatrix} z_{M} - z_{E} = 1 ; & z - 1 = 1 ; & 1 - z = 1. \\ Ou & 1 - z ^{2} = 1 - x - iy ^{2} = (1 - x)^{2} + y^{2} = 1. \end{vmatrix}$										
	6-b	$ z'-1 = \frac{ 1-z }{ z } = z' $									
	$ z-1 =1$; $\ \overrightarrow{OM'}-\overrightarrow{OE}\ =\ \overrightarrow{EM'}\ $; and $ z' =OM'$ then M'O = M'E										
	6-c		1/2								
	M is a point of (C) M' is a point of (d) . The three points O, M and M' are										
		collinear M' is the intersection point of (OM) and (d).									
	1	Salary	Frequency	Center of classes	n _i x _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$\mathbf{n}_{i} \left(\mathbf{x}_{i} - \overline{\mathbf{x}}\right)^{2}$	1			
		F.100 - 6005		(\mathbf{x}_i)	1000	100					
		[400;600]	8	500	4000	400	1 280 000				
		[600;800[5	700	3500	200	200 000				
		[800 ; 1000] [1000 ; 1200]	<u>9</u> 15	900 1100	8100 16500	$\frac{0}{200}$	0 600 000				
		[1200;1200]	3	1300	3900	400	480 000				
		Total	<u>40</u>	1500	36000	100	2 560 000				
Ш		$\overline{X} = \frac{\sum n_i x_i}{40} = 900$ The average of monthly salaries of these 40 workers is 900 000 LL.									
	2	The variance : $V = \frac{1}{n} \left(\sum n_i (x_i - \overline{x})^2 \right) = 64\ 009.$ The standard deviation : $\sigma = \sqrt{v} = \sqrt{64009} = 253$									
		The standard deviation : $\sigma = \sqrt{v} = \sqrt{64009} = 253$.									
		13 workers have a salary < 800000 LL.									
	3	The probability to choose 2 from them is $p = \frac{C_{13}^2}{C_{40}^2} = \frac{13 \times 12}{40 \times 39} = \frac{1}{10} = 0.1$						1 1⁄4			
	<u>Remark :</u> the parts 1 and 2 can be found by using a calculator (using the cent										
		classes and the	· ·	•							
	1	$f(x) + f(-x) = \frac{2e^x}{e^x + 1} - 1 + \frac{2e^{-x}}{e^{-x} + 1} - 1 = 2 - 2 = 0.$									
IV		$f(x)$ is defined over \Box that centered at O and $f(x) + f(-x) = 0$ then $f(x)$ is an odd									
		function and (C) admits the origin O as a center of symmetry.									
	~	$\lim_{x \to +\infty} f(x) = 2 - 1 = 1 ; y = 1 \text{is an asymptote to (C) at } +\infty$									
	2	$\lim_{x \to -\infty} f(x) = -1 \qquad ; y = -1 \text{is an asymptote to (C) at } -\infty$						1			

