دورة سنة 2002 العادية	<mark>امتحانات شهادة الثانوية العامة</mark> فرع علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم:	مسابقة في الرياضيات	عدد المسائل: اربع
الرقم:	ة: ساعتان	

ملاحظة : يسمح باستعمال ألة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (3 points)

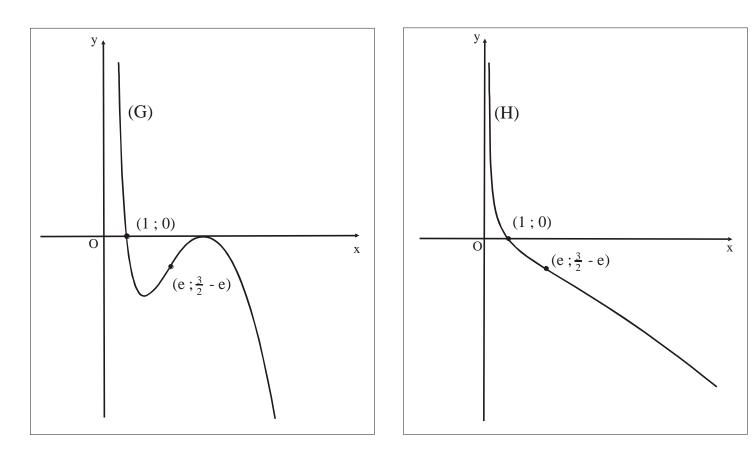
In the table given below, only one among the proposed answers to each question is correct.

Write down the number of each question and give, **with justification**, the answer corresponding to it.

N°	Questions	Answers			
		a	b	С	d
1	A particular solution of the				
	differential equation :	$y = e^{x}$	$y = xe^{-x}$	$y = e^{-x}$	$y = \cos 5x$
	y'' - 4y' - 5y = 0, is :	5			
2	A(1;2;-1) and $B(3;0,1)$				
	are two given points.	m = -1	m = -1	m = 1	m = 1
	An equation of the mediator	n = 1	n = -1	n = 1	n =−1
	plane of [AB] is :				
	x + my + nz - 1 = 0 where				
3	(d) is the line of intersection of				
	the two planes :	\rightarrow	$\overrightarrow{V}(2;-3;-3)$	\rightarrow	\rightarrow
	(P) : $x + y - z + 1 = 0$	V(0;-1;1)	V(2;-3;-3)	V(0;1;1)	V(2;3;-3)
	$(\mathbf{Q}): 2\mathbf{x} - \mathbf{y} + \mathbf{z} = 0.$				
	A direction vector of (d) is :				

II-(7 points)

Let f be the function defined, on the interval I =]0; + ∞ [, by: f(x) = $\frac{\ln x}{x} - 1$.


Designate by (C) its representative curve in an orthonormal system (O; \vec{i} , \vec{j}). (*unit*: 2*cm*).

1) a- Calculate the limits of f at the boundaries of I.

b- Determine the asymptotes of (C).

- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Verify that y = x 2 is an equation of the straight line (d), tangent to (C) at the point A(1; -1).

- 2
- 4) Plot the line (d) and the curve (C).
- 5) One of the two curves (G) and (H), shown in the figure below, represents an **antiderivative** (primitive) F of the given function f.

- a- Among these two curves, which one represents the function F? Justify your answer.
- b- Without finding the expression of F(x), calculate in cm² the area of the domain bounded by the curve (C) of f, the axis of abscissas and the two lines of equations x = 1 and x = e. Give the answer to the nearest 10^{-2} .

III- (5 points)

 \rightarrow

In the complex plane referred to a direct orthonormal system (O; \vec{u}, \vec{v}), consider the points A and A' of affixes -4 and 4 respectively. M being a point in the plane, of affix z, (M is distinct from A), consider the point M' of affix z' such that $z' = \frac{z-4}{z+4}$.

- 1) Write z' in its algebraic form in the case when $z = 4e^{i\frac{\pi}{3}}$.
- 2) Let z = x + iy and z' = x' + iy'. Express x' and y' in terms of x and y.

In all what follows, designate by (C) the circle of center O and radius 4, and suppose that M describes the circle (C) deprived of A and A'.

- 3) Prove that z' is pure imaginary.
- 4) Let $z = 4 e^{i\theta}$, where $0 < \theta < \frac{\pi}{6}$.

Let N be the point of affix \overline{z} , and L be the point of affix $z_1 = 4 e^{i3\theta}$.

a- Plot the points M, N and L in the preceding system.

b- Verify that
$$z_1 = \frac{z^2}{\overline{z}}$$
.

c- Prove that MLN is an isosceles triangle of principal vertex M.

IV-(5 points)

A family F_1 has 4 children : two girls and two boys; a second family F_2 has 3 children : one girl and two boys.

- 1) A club management decides to choose, at random, a group of 3 children from these 7 children to spend a free summer vacation abroad.
 - a- What is the number of possible groups that can be formed?
 - b- Prove that the probability of having exactly one girl among the chosen 3 children is 18

$$\frac{111}{35}$$

c- Let X be the random variable which denotes the number of girls among the chosen 3 children.

Determine the probability distribution (probability law) of X.

2) Due to financial reasons, the club management decides to choose only one child. To do this, the management chooses a family at random, from which a child is chosen randomly, (the choices are supposed to be equiprobable).

Consider the event A : « the chosen child is a girl of the family F_2 ».

a-Verify that the probability of A is $P(A) = \frac{1}{2}$.

b-Calculate the probability of each of the following events :

B : « *the chosen child is a girl of the family* $F_1 \gg$,

C : « the chosen child is a girl »,

D : « the chosen child is from the family F_1 knowing that this child is a girl ».