		1					
	20 العادية	م الحياة مسابقة في مادة الرياضيات دورة سنة 03. اسس التصحيح	فرع علوم الحياة				
Questions		ANSWERS	scheme				
I-		$z' = \frac{\left(1 + \frac{\sqrt{3}}{2}\right) + i\left(\frac{1}{2} + \sqrt{3}\right) - i}{2 - i} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ $e^{i\frac{\pi}{3}} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = z'$					
	2	$EF = z_F - z_E = 2 - i = \sqrt{5} \text{ and } FG = GE = \sqrt{5}$ • or $ z' = 1 = \frac{EG}{EF}$ and arg $z' = (\overrightarrow{EF}; \overrightarrow{EG}) = \frac{\pi}{3}$ hence EFG is equilateral.					
		$ z-z_E = \sqrt{5}$ then EM = $\sqrt{5}$, thus the set of points M is the circle (T) of center E and radius $\sqrt{5}$. EF = $\sqrt{5}$, F belongs to (T). \blacktriangleright or let $z = x + iy$, then $ x+iy-i = \sqrt{5}$ which gives an equation of (T) : $x^2 + (y-1)^2 = 5$	1				
П-	1	A(2;0;0), $B(0;2;0)$ and $c(0;0;2)$	1⁄2				
	2	$\overrightarrow{N_P}$ (1;1;1) is a director vector of (d) and (d) passes through O. (d) : x = m, y = m, z = m.					
	3a	W(m; m; m) with W is a point (P), hence $m + m + m = 2$, $m = \frac{2}{3}$ Thus W $(\frac{2}{3}; \frac{2}{3}; \frac{2}{3})$.					
	3b	WA = WB = WC = $\frac{2\sqrt{6}}{3}$, then W is the center of the circle circumscribed about the triangle ABC. • or OA = OB = OC and W is the orthogonal projection of O on (ABC), So WA = WB = WC					
	4a	We verify that W is the mid point of [BE].	1⁄2				
	4b	The area of ABCE is double of the area of triangle EAB ; $S(EAB) = \frac{1}{2} \overline{AB} \wedge \overline{AE} = \frac{4\sqrt{3}}{3} u^{2} .$ Area ABCE = $\frac{8\sqrt{3}}{3} u^{2} .$ $F = \frac{1}{2} BE \times AC .$	1				
Ш-	1a	P(X = 70 000) = (drawing 50 000 from L.P) × P(drawing 20 000 from R.P) P(X = 70 000) = $\frac{3}{5} \times \frac{3}{4} = \frac{9}{20}$	1/2				

				2				
III-	1b	Xi	40 000	70 000	120 000	150 000	11/2	
		P _i	$\frac{2}{5} \times \frac{3}{4} = \frac{3}{10}$	$\frac{9}{20}$	$\frac{2}{5} \times \frac{1}{4} = \frac{1}{10}$	$\frac{3}{5} \times \frac{3}{4} = \frac{3}{10}$		
	1c	$P(X < 100\ 000) = \frac{6}{20} + \frac{9}{20} = \frac{15}{20} = \frac{3}{4}.$						
	2a	$P(S/D) = \frac{C_3^2}{C_4^2} = \frac{3}{6} = \frac{1}{2}$						
	2b	$P(S \cap D) = P(D) \times P(S/D) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$ $P(S/D) = \frac{C_2^2 + C_2^1 \times C_3^1}{C_5^2} = \frac{1+6}{10} = \frac{7}{10}$ $P(S \cap D) = \frac{1}{3} \times \frac{7}{10} = \frac{7}{30}$ $P(S) = P(S \cap D) + P(S \cap G) = \frac{1}{3} + \frac{7}{30} = \frac{17}{30}$						
IV-	1a	Using the representative curve, we can conform that the function f is continuous and strictly decreasing. Therefore it has an inverse function						
	1b	$D_g =] - \infty ; 1]$ (C) for $x \ge 0$ y of equation $y =$, (G) is symmetric with respect to the test of tes	ric of	0 1	▶ x	2	
	2	The characteristic equation associated to the differential equation is: $r^2 - 3r + 2 = 0$, which has as solution $r_1 = 1$, $r_2 = 2$ we get : $y = C_1e^x + C_2e^{2x}$ we have $y(0) = 1$ and $y(\ln 2) = 0$ (or $y(0) = 1$ and $y'(0) = 0$), consequently $C_1 = 2$ and $C_2 = -1$. Hence $f(x) = 2e^x - e^{2x}$						
	3	$A = \int_{0}^{\ln 2} (2e^{x} - e^{2x}) dx = \left(2e^{x} - \frac{1}{2}e^{2x}\right) \Big _{0}^{\ln 2} = 2e^{\ln 2} - \frac{1}{2}e^{2\ln 2} - 2 + \frac{1}{2} = 0,5u^{2}$						
	4	y = 2e ^x - e ^{2x} , is equivalent to 2e ^x - e ^{2x} + y = 0, $(e^x - 1)^2 = 1 - y$ x ≥ 0 leads to $e^x \ge 1$ then $e^x - 1 = \sqrt{1 - y}$, and $x = \ln(1 + \sqrt{1 - y})$ g(x) = ln(1+ $\sqrt{1 - x}$) → or we prove that g ⁻¹ (x) = f(x) → or we prove that (g o f) (x) = x or (f o g) (x) = x						
	5	$g'(x) = \frac{-1}{2\sqrt{1-x}(1+\sqrt{1-x})}$ The point A(ln2, 0) of (C) is symmetric of B(0, ln2) of (G). The slope of the tangent at A to (C) is f '(ln2) = $\frac{1}{g'(0)} = -4$						

3