 دورة سنة 2004 العادية	امتحانات شهادة الثانوية العامة فرع علوم الحياة	ورارة التربية والتغليم الغاني المديرية العامة للتربية دائرة الامتحانات
الاسم : الرقم :	مسابقة في الرياضيات المدة : ساعتان	عدد المسائل: اربع

ملاحظة : يُسمح بإستعمال ألمة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

ti-ti t-eti J. eti 7 i *

/(ď')

Е

 (\mathbf{P})

(d)

I - (3 points)

In the complex plane referred to a direct orthonormal system (O; u, v), consider the points A and B such that: $z_A = 1$ and $z_B = \frac{3}{2} + i\frac{\sqrt{3}}{2}$. Let (C) be the circle with center A and radius 1.

- 1) a Write $z_B z_A$ in the exponential form.
 - b Determine a measure of the angle (u; AB).
 - c Show that the point B belongs to the circle (C).
- 2) To every point M, of non-zero affix Z, associate the point M' of affix z' such that

$$z' = \frac{\overline{z} + \overline{z}}{\overline{z} + \overline{z}}$$

- Z
 - a Prove that $\overline{z}(z'-1)=2$.
 - b Deduce, when M' moves on the circle (C), that M moves on a circle (T) to be determined.

II - (4 points)

In the space referred to a direct orthonormal system (O; i, j, k), consider the lines (d) and (d') defined by : (x = t + 1) (x = 2m

	$\Lambda = \iota + 1$			$\Lambda = 2 m$
(d):<	y = 2t	and	(d'):<	y = -m + 1
	z = t - 1			z = m + 1
1 .	1		1	

(t and m are two real parameters).

1) Prove that (d) and (d') are skew (not coplanar).

- 2) a Show that x y + z = 0 is an equation of the plane (P) determined by O and (d).
 - b Determine the coordinates of E, the point of intersection of (P) and (d').
 - c Prove that the straight line (OE) cuts (d).

3) a - Calculate the distance from point O to the line (d). b - Deduce that the circle in plane (P), with center O and passing through E, is tangent to line (d).

III- (9 points)

Let f be the function defined, on] 0; $+\infty$ [by f (x) = x + 2 $\frac{\ln x}{x}$. (C) is the representative curve

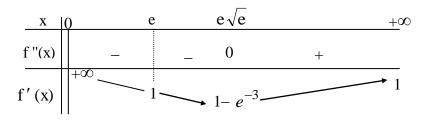
of f in an orthonormal system (O; i, j); unit 2 cm.

1) a – Calculate $\lim_{x \to \infty} f(x)$ and give its graphical interpretation.

b – Determine $\lim_{x \to +\infty} f(x)$ and verify that the line (d) of equation y = x is an asymptote of (C).

c – Study according to the values of x , the relative position of (C) and (d) .

2) The table below is the table of variations of the function f', the derivative of f.



- a Show that f is strictly increasing on its domain of definition, and set up its table of variations.
- b Write an equation of the line (D) that is tangent to (C) at the point G of abscissa e.
- c Prove that the curve(C) has a point of inflection L.
- d Show that the equation f(x) = 0 has a unique root α and verify that $0.75 < \alpha < 0.76$.
- 3) Draw (D), (d) and (C).
- 4) Calculate, in cm^2 , the area of the region bounded by the curve (C), the line (d) and the two lines of equations x = 1 et x = e.

IV- (4points)

Consider two urns U and V :

U contains three balls numbered 0 and two balls numbered 1.

V contains **five** balls numbered 1 to 5.

A - One ball is drawn randomly from each urn.

Designate by X the random variable that is equal to the product of the two numbers that are marked on the two drawn balls.

1) Prove that P(X = 0) is equal to $\frac{3}{5}$.

2) Determine the probability distribution of X.

- \mathbf{B} In this part, the 10 balls that were in urns U and V are all placed in one urn W . Two balls are drawn, simultaneously and at random, from this urn W.
 - 1) What is the number of possible draws of these 2 balls?
 - 2) Let q designate the product of the too numbers that are marked on the two drawn balls. .
 - a Show that the probability P(q = 0) is equal to $\frac{8}{15}$.
 - b Calculate the probability P(q < 4).