Life	sciences	MATH 1 st SESSION 2	SION 2004			
Q		Answers	Μ			
	1-a	$z_{B} - z_{A} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$				
	1-b	$(\vec{u}; \vec{AB}) = \arg(Z_{\vec{AB}}) = \arg(Z_B - Z_A) = \frac{\pi}{3}$				
Ι	1-c	$AB = z_B - z_A = 1$ then B belongs to (C).				
	2-a	$\overline{z}(z'-1) = \overline{z}(\frac{\overline{z}+2}{\overline{z}}-1) = \overline{z}(\frac{2}{\overline{z}}) = 2.$				
	2-b	If M' moves on (C) then AM' = 1 and $ z'-1 = 1$ hence $ z = 2$ then				
	_ 0	z = 2 and M moves on the circle of center O and radius 2.				

Π	$\vec{V}(1; 2; 1) \text{ and } \vec{V}'(2; -1; 1); \vec{V} \text{ and } \vec{V}' \text{ are not collinear, then and (d') are not parallel.}$ Study of the intersection of (d) and (d'): t+1 = 2m; 2t = -m+1; t-1 = m+1 Take $2t = -m+1; t-1 = m+1$, we get $t = 1$ and $m = -1$, these values do not verify $t+1 = 2m$. Hence (d) and (d') are skew $\blacktriangleright \text{Or}: \text{Let L}(1; 0; -1) \text{ be a point of (d) and J}(2; 0; 2) \text{ be a point (d');}$ $\vec{L}J.(\vec{V} \wedge \vec{V}') = \begin{vmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{vmatrix} = -12 \neq 0$					
	By verification : O is a point of (P) (d) lies in (P) because $t + 1 - 2t + t - 1 = 0$ for every real number t. \blacktriangleright Or : M(x ; y ; z) belongs to (P) iff $\overrightarrow{OM}.(\overrightarrow{OL} \land \overrightarrow{V}) = 0$ which gives x - y + z = 0					
	2-b					
	2-c	 (OE) is a line in plane (P), (OE) and (D) are coplanar and they are not parallel (OE and V are not collinear), therefore they intersect. ► Or : Determine a system parametric equations of (OE) and then prove that it cuts (d). 				
	3-a	distance (O/ (d)) = = $\sqrt{2}$.				
	$OE = \sqrt{2}$ = distance (O/(d)); then (C) is tangent to (d).					

1-a	$\lim_{x \to 0} \ln x = -\infty \text{ then } \lim_{x \to 0} f(x) = -\infty \text{ ; y'y is an asymptote of (C).}$					
1-b	$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ then } \lim_{x \to +\infty} f(x) = +\infty \text{ ; } \lim_{x \to +\infty} [f(x) - x] = 0 \text{ hence the line}$ (d) of equation $y = x$ is an asymptote of (C) at $+\infty$.					
1-0	$f(x) - x = 2\frac{\ln x}{x}.$ For x = 1, (C) cuts (d).					
1-0	For $0 < x < 1$, (C) cuts (d). For $0 < x < 1$, f(x) $-x < 0$ then (C) is below (d). For $x > 1$, (C) is above (d).					
	$f'(x) \ge 1 - \frac{1}{e^3} > 0 \qquad \qquad \frac{x \mid 0 \qquad \qquad +\infty}{1 \qquad \qquad \qquad +\infty}$					
2-a	then f is strictly $f(x) = -\infty$					
2-b	$y = f'(e)(x - e) + f(e)$; $y = x - e + e + \frac{2}{e} = x + \frac{2}{e}$					
2-c	f "(x) vanishes for $x = e\sqrt{e}$ and changes sign, then (C) has a point of inflection L of abscissa $e\sqrt{e}$.					
2-d	f is continuous and changes sign on its domain, $f(x) = 0$ has at least a root α , moreover f is strictly increasing, then α is unique.					
	$f(0.75) \times f(0.76) = -0.017 \times 0.377 < 0$, then $0.75 < \alpha < 0.76$.					
3						
4	$A = \int_{1}^{e} 2 \frac{\ln x}{x} dx = \left[\ln^2 x \right]_{1}^{e} = 1 u^2, \text{ then } A = 4 \text{cm}^2.$					
	1-b 1-c 2-a 2-b 2-c 2-d					

	A-1	To get a product equal to 0 it's enough to draw from U a ball numbered 0, therefore the probability is equal to $\frac{3}{5}$. \blacktriangleright Or : Number of possible draws is equal to $5 \times 5 = 25$ $P(X = 0) = \frac{3 \times 5}{5 \times 5} = \frac{3}{5}$.						
IV	A-2	$\begin{array}{ c c c }\hline x_i & 0 \\ \hline p_i & 3/5 \\ \hline \end{array}$	1 2/25	2 2/25	3 2/25	4 2/25	5 2/25	
	B-1	$C_{10}^2 = 45.$						
	B-2 a	To get a product equal to 0 we must obtain one of the following outcomes: Two balls numbered 0 or $\{0; a\}$ with $a = 1, 2, 3, 4, 5$. Number of favorable cases is $C_3^2 + C_3^1 \times C_7^1 = 24$ $P(q = 0) = \frac{24}{45} = \frac{8}{15}$						
	B-2 b	P(a < 4) = P(a = 0) + P(a = 1) + P(a = 2) + P(a = 3)						