دورة سنة 2008العادية	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة: ساعتان	عدد المسانل: اربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة) .

I- (4 points)

In the complex plane (P) referred to an orthonormal system (O; \vec{u} , \vec{v}), consider the points

0000, B and C of affixes $a = \sqrt{3} - i$, $b = \sqrt{3} + i$ and c = 2i respectively.

- 1) Show that the three points A, B and C are on the same circle with center O.
- 2) Write $\frac{c-b}{a-b}$ in the algebraic and in the exponential forms.
- 3) Let M be a point other than O, of affix z = x + iy, in the plane (P); (x and y are real numbers). Let $Z = \frac{z - b}{z - b}$.

Let
$$Z = \frac{z}{z}$$
.

a-Determine the set (E) of points M such that |Z|=1.

b-Verify that A and C belong to (E).

c-Determine the set (F) of points M such that Z is pure imaginary.

II- (4 points)

To encourage national tourism, a tourist agency proposes week-ends of two days, and offers its customers three choices:

- Full-board week-end
- Half-board week-end
- Luxury week-end.

The agency published the following advertisement:

Choice Destination	Full-board	Half-board	Luxury
Mountain	150 000 LL	100 000 LL	200 000 LL
Beach	100 000 LL	75 000 LL	150 000 LL

This agency estimates that 65% of its customers choose mountains, and the others choose the beach; and that out of the customers to any destination 55% choose full-board and 30% choose half-board while the others choose luxury week-ends.

A customer is chosen at random and is interviewed.

Consider the following events:

A: « the interviewed customer has chosen the mountains».

B: « the interviewed customer has chosen the beach ».

- C: « the interviewed customer has chosen full-board week-end ».
- D: « the interviewed customer has chosen half-board week-end ».
- S: « the interviewed customer has chosen the luxury week-end ».

- 1) a- Calculate the following probabilities: $P(A \cap C)$, $P(B \cap C)$ and P(C).
 - b- The interviewed customer had chosen full-board, what is the probability that he chose the beach?
- 2) Let X be the random variable that is equal to the amount paid to the agency by a customer.
 - a- Show that $P(X=150\ 000) = 0.41$ and determine the probability distribution for X.
 - b- Calculate the mean(expected value) E(X). What does the number thus obtained represent?
 - c- Estimate the sum received by this agency when it serves 200 customers.

III- (4 points)

In the space referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}), consider the points A(1; 2; 0), B(2; 1; 3), C(3; 3; 1), D(5; -3; -3) and E(-3; 7; 3).

- 1) Find an equation of the plane (P) determined by A, B and C.
- 2) Find a system of parametric equations of line (DE).
- 3) Prove that (P) is the mediator plane of [DE].
- 4) Prove that (BC) is orthogonal to (DE).
- 5) a- Calculate the area of triangle BCD.

b-Calculate the volume of tetrahedron ABCD, and deduce the distance from A to plane BCD.

IV- (8 points)

Let f be the function defined on IR by $f(x) = (x - 1)e^x + 1$ and designate by (C) its representative curve in an orthonormal system (O; i, j).

- 1) a- Calculate $\lim_{x \to -\infty} f(x)$ and deduce an asymptote (d) of (C).
 - b- Study, according to the values of x, the relative positions of (C) and (d).
 - c- Calculate $\lim f(x)$ and find f(2) in decimal form.
- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Prove that the curve (C) has a point of inflection W whose coordinates are to be determined.
- 4) a- Draw (d) and (C).
 - b- Discuss graphically, according to the values of the real parameter m, the number of solutions of the equation $(m 1) e^{-x} = x 1$.
- 5) Calculate the area of the region bounded by (C), the axis of abscissas and the two lines of equations x = 0 and x = 1.
- 6) a- Show that the function f has on $[0; +\infty[$ an inverse function g and draw (G), the representative curve of g in the system (O; \vec{i}, \vec{j}).
 - b- Find the area of the region bounded by (G), the axis of ordinates and the line (d).