Mathematics (last trial)

Exercise one:

In a complex plane referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$, consider a point

M, distinct from O, of affix z and appoint M' of affix z' such that $z' = \frac{z}{|z|^2}$.

1) Determine the algebraic form of z' in each of the following cases:

$$z = 2$$
 ; $z = \sqrt{2}e^{i\frac{\pi}{4}}$; $z = \sqrt{2}e^{-i\frac{\pi}{4}}$
2) Verify that : $z' = \frac{1}{z}$.

- 3) Prove that the points O, M, M' are collinear.
- 4) Prove that $\overline{z'-1} = \frac{1-z}{z}$.
- 5) In this part M describes a circle (C) of center E(1;0) and radius 1 , (M distinct from O) a- Verify that |1 z| = 1
 - b- Prove that |z' 1| = |z'| then deduce that M' describes a straight line (d) to be determined.

Exercise two:

In a farm , there are two sizes of rabbits , "small and big" , and 3 colors, " white , brown and black" , are formed of 30 rabbits as shown in the following table.

Color	White	Brown	Black
Size			
Small	4	4	6
Big	10	2	4

Part A:

We select at random one rabbit out of 30 rabbits .

a- Calculate the probability for the chosen rabbit to be of brown color.

- b- Calculate the probability for the chosen rabbit to be of black color from the small size.
- c- Suppose that the selected rabbit is **not of brown color**.

Calculate then the probability for this rabbit to be from the big size.

Part B:

In this part , we select simultaneously and randomly **3** rabbits from the **24** rabbits that **doesnot have brown color**.

Let **X** be the random variable that is equal to the number of obtained rabbits that have white color and small size.

a-Verify that $P(X=1) = \frac{190}{506}$

b- Determine the probability distribution of **X**.

c-Calculate the expected value of X.

Exercise three:

In a space referred to a direct orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$, consider the plane (P) of

equation 2x - y + z = 0 and the plane (Q) of equation $x + y - z + 2\sqrt{3} = 0$.

Let (d) be the line of intersection of (P) and (Q).

- 1) Prove that (P) and (Q) are perpendicular.
- 2) Write a system of parametric equations of line (d).
- 3) Let (C) be a circle , in plane (P) , of center O and radius 3. Prove that (d) cuts (C) in two points A and B.
- 4) Designate by E the midpoint of [AB]. Show that E is of coordinates $(\frac{-2\sqrt{3}}{3}, \frac{-2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$, then write a system of parametric equations of (OE).
- 5) Determine the equation of the mediator plane of [AB].

Exercise four:

The plane is referred to an orthonormal reference (O; i, j).

Part A:

Consider the differential equation (E): y' - y = x + 1.

- 1) Determine the general solution of (E).
- 2) Determine the particular solution of (E) knowing that its representative curve passes through the origin of the reference.

Part B:

Let f be the defined by: $f(x) = 2e^{x} - x - 2$. Let (C) be its representative curve.

1)

- a- Study the variations of f.
- b- Prove that the straight-line (Δ) of equation y = -x 2 is an asymptote to (C) at $-\infty$ and study the relative position of (C) and (Δ) then calculate $\lim_{x \to +\infty} \frac{f(x)}{x}$.

2)

- a- Prove that the equation f(x) = 0 admits two real roots.
- b- Verify that 0 is one of these roots and that the second root α verifies the relations $2e^{\alpha} = \alpha + 2$ and $-1.6 < \alpha < -1.5$.

3)

- a- Write the equation of the tangent (d) to (C) at O
- b- Draw (Δ), (d) and (C). (Graphical unit: 2 cm)

4)

- a- Calculate the area $A(\alpha)$ of the closed domain limited by (C) and the axis of abscissa.
- b- Prove that $A(\alpha) = -(2\alpha^2 + 4\alpha)cm^2$.

GOOD WORK

Exercise one:

1) $z = 2 \rightarrow z' = \frac{1}{2}$	
$z = \sqrt{2}e^{i\frac{\pi}{4}} \to z' = \frac{1}{2} + i\frac{1}{2}$	1
$z = \sqrt{2}e^{-i\frac{\pi}{4}} \to z' = \frac{1}{2} - i\frac{1}{2}$	
2) $z' = \frac{z}{ z ^2} = \frac{z}{z\overline{z}} = \frac{1}{\overline{z}}$	0.5
3) $z' = \frac{1}{\bar{z}} \rightarrow arg(z') = -arg(\bar{z}) + 2k\pi$	0 5
$\left(\overrightarrow{OM},\overrightarrow{OM'}\right) = 2k\pi \to O, M, M' are collinear$	0.5
4) $Z' - 1 = \frac{1}{\overline{z}} - 1 = \frac{1 - \overline{z}}{\overline{z}} \to \overline{Z' - 1} = \overline{\left(\frac{1 - \overline{z}}{\overline{z}}\right)} \to \overline{Z' - 1} = \frac{1 - \overline{z}}{\overline{z}}$	0.5
5) a- $M \in C(0,1) \rightarrow z-1 = 1 \rightarrow 1-z = 1$	0.5
b- $ z' = \frac{1}{ z }$ and $ z'-1 = \frac{1}{ z } \to z' = z'-1 $	1
$\rightarrow OM' = EM'$	1
\rightarrow (d) is the perpendicular bisector of [OE]	

Exercise two:

Part A:	
a- $P(brown \ color) = \frac{c_6^1}{c_{a0}^1} = 0.2$	0.5
b- $P(black \cap small) = \frac{c_6^1}{c_{20}^1} = 0.2$	0.5
c- $P\left(\frac{big}{brown}\right) = \frac{P(big \cap \overline{brown})}{P(\overline{brown})} = \frac{7}{12}$	0.75
Part B:	
a- $P(X = 1) = \frac{C_4^1 C_{20}^2}{C_{24}^3} = \frac{190}{506}$	0.5
b- $X = \{0, 1, 2, 3\}$	
$P(X=0) = \frac{285}{506}$	1
$P(X = 1) = \frac{190}{506}, P(X = 2) = \frac{30}{506}, P(X = 3) = \frac{1}{506}$	
$c- E(X) = \sum p_i x_i = 0.5$	0.75

Exercise three:

1) $\overrightarrow{n_p} \cdot \overrightarrow{n_Q} = 0$	0.5
2) (d): $\begin{cases} x = \frac{-2\sqrt{3}}{3} \\ y = t - \frac{4\sqrt{3}}{3} \\ z = t \end{cases}$	0.75
3) distance($0 \rightarrow (d)$) = 2 < 3 \rightarrow (C)cuts (d)at two	1
points A and B	
4) $\overrightarrow{V_d} \cdot \overrightarrow{OE} = 0$ and $\overrightarrow{OE} \cdot \overrightarrow{n_P} = 0$ then $E\left(\frac{-2\sqrt{3}}{3}, \frac{-2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$	
$(OE): \begin{cases} x = \frac{-2\sqrt{3}}{3}m \\ y = \frac{-2\sqrt{3}}{3}m \\ z = \frac{2\sqrt{3}}{3}m \end{cases}$	1.25
5) Mediator plane of $[AB]: y + z = 0$	0.5

Exercise four:

Part /	4:					
$1) \ Y = ce^x - x - 2$				1		
2)	2) $Y(0) = 0 \rightarrow Y = 2e^x - x - 2$				0.5	
Part B	Part B:					
1) a- $\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$						
	$f'(x) = 2e^x - 1$					
	x	-∞	-ln2	+∞		
	f'(x)	-	0	+		1.25
	f(x)	+∞ dec	-1 + ln2	inc	+∞	
$\operatorname{b-lim}_{x\to -\infty} f(x) - (-x-2) = 0 \to (\Delta) is \text{ an } 0. A \text{ to } (C) at - \infty$						
$f(x) - y_{(\Delta)} = 2e^x > 0$ for every $x \in IR$						

