3rd secondary class(LS)

Mathematics (Term 1 test)

Exercise one:(2 points)

Choose the correct answer with justification:

1) Given $z = sin50^{\circ} + isin40^{\circ}$, the exponential form of $u = z\bar{z} + i$ is:

a)-
$$\sqrt{2}e^{i\frac{5\pi}{4}}$$
 b) $\sqrt{2}e^{i\frac{\pi}{4}}$ c)1 + *i* d)non of these.
2) $T = \frac{(1+i)^9}{(1-i)^8}$. *T* is equal to:
a)1 - *i* b)1 + *i* c)-1 + *i* d)-1 - *i*

Exercise two:(4 points)

The four parts of this exercise are independent.

- 1) $f(x) = x \ln(1 + e^x)$. Determine $\lim_{x \to +\infty} f(x)$.
- 2) Solve the equation: $e^{2x} e^{x + ln^2} = 3$.
- 3) Solve the inequality: $\ln(x^2 x) \le \ln 2 + \ln 3$.

4) a- Verify that for all ,
$$\frac{e^{2x}-1}{e^{2x}+1} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

b-Deduce
$$\int \frac{e^{2x}-1}{e^{2x}+1} dx.$$

Exercise three:(2 points)

In the space of an orthonormal reference $\left(O; \stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{j}, \stackrel{\rightarrow}{k}\right)$, consider the points

A(1,0,0), B(1,1,1), C(2,3,0), and D(2,0,3).

1) Verify that ABCD is a tetrahedron whose volume is to be calculated.

2) Prove that the two straight-lines (AB) and (CD) are orthogonal.

3) Let $H\left(\frac{17}{11}, \frac{9}{11}, \frac{9}{11}\right)$ and I be the midpoint of [CD]. Prove that A, H, and I are collinear.

Exercise three:(4 points)

In the complex plane referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$, consider the points A,E, M and M' so that $z_A = 2$, $z_E = 4$, $z_M = z$, $z_{M'} = z'$ with $z' = \frac{-4}{z-2}$.

1) a-Solve the equation z' = z.

b-Denote by z_B and z_C the previous solutions (B lies in quadrant IV). Show that the exponential forms of z_B and z_C are $2e^{-i\frac{\pi}{2}}$ and $2e^{i\frac{\pi}{2}}$ respectively then Plot all the given points.

c-Find the exponential form of $\frac{z_E - z_B}{z_E - z_C}$ and deduce the nature of triangle EBC.

2) a-Calculate z' - 2 in terms of z and deduce that $AM' = \frac{20M}{AM}$

b-Find the locus of M' when M moves on line (BC)

3) a-Verify that
$$\left(\vec{u}, \overline{AM'}\right) = \pi + \left(\overline{AM}, \overline{OM}\right) + 2k\pi$$

b-Find the locus of M' when M moves on a circle of diameter [AO]

Exercise four:(8 points)

Let f be a function defined on IR by $f(x) = e^{-2x} - 2e^{-x} + 1$ and (C) be its representative curve in an orthonormal system ($0; \vec{i}, \vec{j}$). (unit=2cm)

- 1) Calculate $\lim_{x \to +\infty} f(x)$ then deduce an asymptote (d)to (C).
- 2) Calculate $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} \frac{f(x)}{x}$
- 3) Determine f'(x) and set the table of variations of f.
- 4) Prove that (C)has an inflection point I whose coordinates are to be determined
- 5) Determine the coordinates of the intersection point of (C) and (d).
- 6) Draw (*d*)and (*C*).
- 7) Let g be the function given by $g(x) = \ln(f(x))$ and let (G) be its representative curve.
 - a- Justify that the domain of definition of g is $]-\infty,0[\cup]0$, $+\infty[$ and set up its table of variations
 - b- Prove that the line (D) of equation y = -2x is an asymptote to (G).
 - c- Solve the equations g(x) = 0 and g(x) = -2x.
 - d- Draw (D)and (G) in a new system of axes.

Life science section (Distribution of marks over 20)

Exercise one:

$u = z ^2 + i = 1 + i \to u = \sqrt{2}e^{i\frac{\pi}{4}}$	1 point
$ T = \sqrt{2}$ and $\arg(T) = \frac{\pi}{4} + 2k\pi \to T = 1 + i$	1 point

Exercise two:

1) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln\left(\frac{e^x}{1+e^x}\right) = \lim_{x \downarrow +\infty} \ln\left(\frac{e^x}{e^x}\right) = \ln 1 = 0$	1 point
2) $x = ln3$	1 point
3) $x \in [-2,0[\cup]1,3]$	1 point
4) a- $e^{-x} = \frac{1}{e^x} \to \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.	0.5 pt.
b- $\int \frac{e^{2x} - 1}{e^{2x} + 1} dx = ln(e^x + e^{-x}) + k$	0.5 pt.

Exercise three:

\overrightarrow{AB} . $(\overrightarrow{AC} \times \overrightarrow{AD}) = -6 \neq 0 \rightarrow ABCD$ is a tetrahedron	0.75pt.
$V = \frac{1}{6} \times 6 = 1 \text{ unit cube}$	
$\overrightarrow{AB}.\overrightarrow{CD} = 0 \rightarrow \overrightarrow{AB} and \overrightarrow{CD} are orthogonal$	0.5 pt.
$I\left(2,\frac{3}{2},\frac{3}{2}\right) AND \overrightarrow{IA} \times \overrightarrow{IH} = \overrightarrow{0} \rightarrow I, A AND H are collinear$	0.75 pt.

Exercise four:

1) a- $z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 - i\sqrt{3}$	0.5
b- $z_c = 2e^{i\frac{\pi}{s}}$ and $z_B = 2e^{-i\frac{\pi}{s}}$	0.5
$c_{-\frac{z_E-B}{z_E-z_C}} = e^{i\frac{\pi}{s}}$	1
The nature of triangle EBC is equilateral triangle.	
2) $ z'-2 = \left \frac{-2z}{z-2}\right \to AM' = \frac{20M}{AM}$	0.5

b-(BC)perpendicular bisector of $[OA] \rightarrow AM' = 2$	0.5
\rightarrow M'moves on a circle center A radius 2.	
3) a- $\arg(z'-z) = \arg(-2z) - \arg(z-2) + 2k\pi$	0.5
b- M' moves on a straight line perpendicular to $x - ax$ is	0.5
passing through A	

