الدورة العادية للعام ٢٠١٢	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	المدة ساعتان	عدد المسائل: أربع

I- (4 points)

In the space referred to a direct orthonormal system (O; \vec{i} , \vec{j} , \vec{k}), consider the following points: A (4;0;1), B(2;1;2), C(2;0;3) and E(3;-1;0).

- 1) a- Write an equation of the plane (P) determined by A, B and C.
 - b- Show that A is the orthogonal projection of E on (P).
- 2) a- Show that triangle ABC is right.
 - b- Calculate the area of the triangle ABC.
 - c- Calculate the volume of the tetrahedron EABC.
- 3) (Q) is the plane with equation x 2y 2z 2 = 0. Show that (Q) passes through A and is perpendicular to (BE).
- 4) a- Write a system of parametric equations of the line (BC).
 - b- Let M be a variable point on (BC). Prove that the distance from M to (Q) remains constant as M moves on (BC).

II- (4 points)

A shop sells two types of earphones E_1 and E_2 and three types of batteries B_1 , B_2 and B_3 . During the promotion period, some items are placed in two baskets U and V.

Basket U contains 15 earphones of type E_1 and 5 earphones of type E_2 ; Basket V contains 8 batteries of type B_1 , 10 batteries of type B_2 and 7 batteries of type B_3 .

- A- A customer selects, at random, one item from each basket.
- 1) Show that the probability of obtaining an earphone E_1 and a battery B_1 is equal to $\frac{6}{25}$.
- 2) Calculate the probability that an earphone E_1 is among the two selected items.
- 3) The shop announces the following prices:

Item	Earphone E ₁	Earphone E ₂	Battery B ₁	Battery B ₂	Battery B ₃
Price in LL	40 000	15 000	30 000	25 000	50 000

X is the random variable equal to the amount paid by the customer for buying the two selected items.

- a- Prove that the probability P(X = 65 000) is equal to $\frac{37}{100}$.
- b- Determine the probability distribution of X.
- **B-** In this question, a customer selects, at random, an earphone from basket U and selects simultaneously and at random two batteries from basket V. Calculate the probability that the customer pays an amount less than or equal to 70 000LL.

III- (4 points)

The complex plane is referred to a direct orthonormal system (O; \vec{u} , \vec{v}).

For every point M with affix $z \ (z \neq 0)$, we associate the point M' with affix z' such that $z' = \frac{2}{\overline{z}}$.

- 1) Let $z = re^{i\theta}$ (r > 0), write z' in exponential form.
- 2) a- Show that $OM \times OM' = 2$.

b- If z = z', prove that M moves on a circle (C) whose center and radius are to be determined.

- 3) Let z = 1 + iy where y is a real number.
 - a- Prove that |z'-1| = 1.

b- As y varies, show that M' moves on a circle (C') whose center and radius are to be determined

IV- (8 points)

Consider the function f defined over \Box by $f(x) = (x+1)^2 e^{-x}$ and denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) a- Determine $\lim_{x\to 0} f(x)$ and calculate f(-2).
 - b- Determine $\lim_{x \to +\infty} f(x)$ and deduce an asymptote to (C).
- 2) Show that $f'(x) = (1-x^2)e^{-x}$ and set up the table of variations of f.
- 3) The line (d) with equation y = x intersects (C) at a point with abscissa α .

Verify that $1.4 < \alpha < 1.5$.

- 4) Draw (d) and (C).
- 5) Let F be the function defined on \square by $F(x) = (px^2 + qx + r) e^{-x}$.
 - a-Calculate p, q and r so that F is an antiderivative of f.
 - b- Calculate the area of the region bounded by (C), the axis of abscissas and the two lines with equations x = 0 and x = 1.
- 6) The function f has over [1;+∞[an inverse function h. Determine the domain of definition of h and draw its representative curve in the same system as (C).

2

I-	Solution	Mark		
1a	For every point M(x; y; z) of (P); $\overrightarrow{AM}.(\overrightarrow{AB} \land \overrightarrow{AC}) = 0$. So, (P): $x + y + z - 5 = 0$.			
1b	$\overrightarrow{AE}(-1,-1,-1)$, $\overrightarrow{N}_P(1,1,1)$ then $\overrightarrow{AE}=-\overrightarrow{N}_P$. (AE) is perpendicular to (P) and $\overrightarrow{A} \in (P)$. Thus A is the orthogonal projection of E on (P).	0.5		
2a	$\overrightarrow{AB}(-2,1,1)$, $\overrightarrow{BC}(0,-1,1)$; $\overrightarrow{AB}.\overrightarrow{BC}=0$ Thus, \overrightarrow{ABC} is right at B.	0.5		
2b	Area (ABC) = $\frac{1}{2}$ AB×BC = $\frac{1}{2}\sqrt{6\times2} = \sqrt{3} u^2$	0.5		
2c	$V = \frac{A_{(ABC)} \times AE}{3} = 1u^3$. OR: By calculating the triple scalar product.	0.5		
3	The coordinates of A satisfy the equation of (Q): $4-0-2-2=0$. \rightarrow BE(1,-2,-2) and N _Q (1;-2;-2) then (Q) passes through A and is per. to (BE)	0.5		
4a	\rightarrow BC(0,-1,1), (BC): x = 2; y = -m+1; z = m+2; m $\in \square$.	0.5		
4b	$d(M \to (Q)) = \frac{ 2 + 2m - 2 - 2m - 4 - 2 }{\sqrt{1 + 4 + 4}} = 2.$	0.5		

II-	Solution				Mark			
A1	$P(E_1, B_1) = \frac{15}{20} \times \frac{8}{25} = \frac{120}{500} = \frac{6}{25}.$				0.5			
A2	$P(E_1,B) = \frac{15}{20} \times 1 = \frac{3}{4}.$					0.5		
A3a	a $P(X = 65000) = P(E_1, B_2) + P(E_2, B_3) = \frac{15}{20} \times \frac{10}{25} + \frac{5}{20} \times \frac{7}{25} = \frac{37}{100}.$					0.5		
	$X = x_i$	40000	45000	65000	70000	90000		
A3b	p_{i}	$\frac{1}{10}$	$\frac{2}{25}$	$\frac{37}{100}$	$\frac{6}{25}$	$\frac{21}{100}$		1.5
	To pay a sum less than or equal to 70000LL, we cannot choose E ₁ since 2 batteries							
В	B cost at least 50000LL; thus we choose {E ₂ ,B ₂ ,B ₂ } or {E ₂ ,B ₁ ,B ₂ } $P(S \le 70000) = \frac{5}{20} \times \frac{C_{10}^2 + C_8^1 \times C_{10}^1}{C_{25}^2} = \frac{5}{48}.$						1	

III	Solution	Mark
1	$z' = \frac{2}{re^{-i\theta}} = \frac{2}{r}e^{i\theta}.$	0.5
2a	$OM \times OM' = r \times \frac{2}{r} = 2.$ $OR: z' = \left \frac{2}{\overline{z}} \right = \frac{2}{ z } \text{ hence } OM' = \frac{2}{OM}.$	0.5
2b	If $z = z$ 'then $OM^2 = 2$; $OM = \sqrt{2}$. M moves on a circle with center O and radius $\sqrt{2}$.	1
3a	$ z'-1 = \left \frac{2}{1-iy}-1\right = \left \frac{1+iy}{1-iy}\right = \frac{\sqrt{1+y^2}}{\sqrt{1+y^2}} = 1.$	1
3b	Let I be the point with affix 1. IM' = 1. Thus, M' moves on the circle (C') with center $I(1; 0)$ and radius 1.	1

IV	Solution	Mark
1a	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x+1)^2 e^{-x} = +\infty ; f(-2) = 7.4.$	0.5
1b	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x+1)^2}{e^x} = \lim_{x \to +\infty} \frac{2(x+1)}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0. \text{ The x-axis is an}$ asymptote to (C). $f'(x) = 2(x+1)e^{-x} - e^{-x}(x+1)^2 = (1-x^2)e^{-x}$	0.5
2	$f'(x) = 2(x+1) e^{-x} - e^{-x} (x+1)^{2} = (1-x^{2}) e^{-x}$ $\begin{array}{c ccccc} x & -\infty & -1 & 1 & +\infty \\ \hline f'(x) & & 0 & + & 0 & - \\ \hline f(x) & & & 0 \end{array}$	1.5
3	$f(1.4) = 1.42 > 1.4$; $f(1.5) = 1.39 < 1.5$ thus $1.4 < \alpha < 1.5$.	1
4	3 -3 -7 -6 -5 -4 -3 -2 -1 0 3 3 3 5 6 9 8 3	1.5
5a	$F'(x) = f(x)$ so $-p x^2 + (2p - q) x + q - r = x^2 + 2 x + 1$ for all real numbers x. Hence, $p = -1$, $q = -4$, $r = -5$.	1
5b	Area = $\int_{0}^{1} f(x) dx = (-x^2 - 4x - 5)e^{-x} \Big]_{0}^{1} = (5 - \frac{10}{e}) = 1.321 u^2.$	1
6	$D_h = \left[0; \frac{4}{e}\right], (C_h)$ is symmetric to (C) with respect to the straight line with equation $y = x$.	1