Probability

- If A and B are independent: $P(A \cap B) = P(A) P(B)$
- $P(A/B) = \frac{P(A \cap B)}{P(B)}$
- $P(A \cap B) = P(A/_B) \cdot P(B)$

•
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- $P(\overline{A}) = 1 P(A)$
- P (at least one __) = 1 P (no__)
- Randomly and simultaneously: $C_n^r = \frac{n!}{r!(n-r)!}$
- Successively: with replacement $\frac{1}{T} \cdot \frac{1}{T} \dots$

without replacement $\frac{1}{T} \cdot \frac{1}{T-1}$

- $P(A \cap \overline{B}) = P(A) P(A \cap B)$
- $P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots$
- In the case of tree:

$$\mathbf{E}(\mathbf{x}) = \Sigma x_i p(x_i)$$

 $P(X_{i})$

E(x): Expected Value.

• In the case of table:

	В	
А	/	

 $P(A \cap B)$