Functions

 $\frac{k}{\infty} = 0 \qquad \qquad \frac{k}{0} = \infty \qquad \qquad \frac{\infty}{0} = \infty$ $\frac{\infty}{\infty} \quad \text{or} \qquad \frac{0}{0} \rightarrow \text{Apply L'Hopital's Rule}$ Which means $\lim \frac{u}{v} = \lim \frac{u'}{v'}$ $\infty - \infty \qquad \text{indetermined form}$ take the stronger common factor. $\text{Lnx} <<< x <<< e^{x}$

 $0. \infty$ indetermined form

 $\frac{\infty}{\frac{1}{0}} = \frac{\infty}{\infty}$ then apply L'Hopital's Rule $\infty + \infty = \infty \qquad -\infty - \infty = -\infty$ k. $\infty = \infty \qquad \frac{0}{\infty} = 0$. $\frac{1}{\infty} = 0$

- $\lim_{x \to k} f(x) = \pm \infty \rightarrow x = k$ is vertical asymptote.
- $\lim_{x \to \infty} f(x) = k \to y = k$ is horizontal asymptote.
- To prove (d): y = ax + b is oblique asymptote $\lim_{x \to \infty} [f(x) - y] = 0$
- To study the relative position of (C) and (d):
 - \Rightarrow Check the sign of f(x) y
 - $f(x) y > 0 \rightarrow (C)$ is above (d).
 - $f(x) y < 0 \rightarrow (C)$ is below (d).
 - $f(x) y = 0 \rightarrow (C)$ intersects (d).

• equation of the tangent to (C) at x = a:

y = f(a) + (x-a). f'(a)

- To find the point of intersection between 2 curves, put f(x) = g(x) then find x.
- Point of inflection \rightarrow f "(x) = 0 and f " changes sign.
- I (a,b) is a center of symmetry then, f(2a-x) + f(x) = 2b
- (d): x = a is an axis of symmetry:

f(2a-x) = f(x).

•
$$(\frac{u}{v})' = \frac{u'v - v'u}{v^2}$$

 $(u.v)' = u'v + v'u$
 $(u^n)' = n.u^{n-1}.u'$

• To prove f admits an inverse function:

f is defined, continuous and strictly monotonic (\uparrow or \downarrow), then f admits an inverse function whose graph is symmetric w.r.t the line y = x.

- $D_{f}^{-1} = R_{f}$

- f and f' have the same variation.
- To find the point of intersection between the function and its inverse, put f(x) = x and solve to find x.
- To prove g(x) in the inverse of f(x), then f(g(x)) = x.
- Tangent parallel to the x-axis \rightarrow f'(x) = 0.
- Slope of the tangent = f ' (point of tangency).

-
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

* To prove A(a,b) belongs of $f^{-1}(x)$, prove f(b) = a

- Sign of f(x):
 - * If the graph of f(x) is above the x-axis, then f(x) > 0.
 - * If the graph of f(x) is below the x-axis, then f(x) < 0.
 - * If the graph of f(x) intersects the x-axis, then f(x) = 0.

To prove f(x) = 0 admits a unique root $\alpha \in [a, b]$: • 1- f is defined, continuous and strictly monotonic. 2- $f(a) \cdot f(b) < 0$ odd function: $f(-x) = -f(x) \Rightarrow$ symmetric w.r.t. O (0,0) even function: $f(-x) = f(x) \Rightarrow$ symmetric w.r.t. y- axis. If the graph of f admits maximum of minimum at x = a, then f'(a) = 0. $\lim_{x\to 0^+} \ln x = -\infty$ $\lim lnx = +\infty$ $x \rightarrow +\infty$ $\ln 1 = 0$ • $\ln e =$ $(\ln x)' = \frac{1}{r}$ $(\ln u)$ $\ln(a.b) = \ln a + \ln b$ $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$ $Ln(a^n) = nln a$ $Ln e^{x} = x$ =x• $e^0 = 1$ $e^{-\infty}=0$ $+\infty$ $e^{x} \cdot e^{y} = e^{x+y}$ $e^{x} > 0$ for any real number x. $\frac{e^x}{e^y} = e^{x-y}$ $(e^x)' = e^x$ $(e^{u})' = u' \cdot e^{u}$

• $\ln x = k \Leftrightarrow x = e^k$ $e^x = k \Leftrightarrow x = \ln k$